top of page


  1. Igbaria-Jaber, Y.; Hofmann, L.; Gevorkyan-Airapetov, L.; Shenberger, Y.; Ruthstein, S.; Revealing the DNA binding modes of CsoR by EPR spectroscopy. ACS Omega. 2023, 8, 39886-39895, [link].

  2. Otis, G.; Aias, D.; Grinberg, I.; Ruthstein, S.; Mastai, Y.; Probing chirality of crystals using electron paramagnetic resonance (EPR) spectroscopy. J. Mol. Struct. 2023, in press. [link]

  3. Shenberger, Y.; Gevorkyan-Airapetov, L.; Hirsch, M.; Hofmann, L.;Ruthstein, S.; An in-cell spin-labelling methodology provides structural information on cytoplasmic proteins in bacteria. Chem. Comm. 2023, 59. 10524-10527. [link]

  4. Hirsch, M.; Hofmann, L.; Shenberger, Y.; Gevorkyan-Airapetov, L.; Ruthstein, S.; Conformations and local dynamics of the CopY metal sensor revealed by EPR spectroscopy. Biochemistry. 2023, 62, 797-807. [link]

  5. Singewald, K.; Hunter, H.; Cunningham, T.F; Ruthstein, S.; Saxena, S.; Measurement of protein dynamics from site directed Cu(II) labeling. Analysis & Sensing. 2023, 3, 00053. [link]

  6. Hofmann, L.; Mandato, A.; Saxena, S.; Ruthstein, S.; The use of EPR sepctroscopy to study transcription mechanisms. Biophys. Rev. 2022, 14, 1141-1159. [link].

  7. Litvak, I.; Cahana, A.; Anker, Y.; Ruthstein, S.; Cohen, H.; Nitrogen structure determination in treated fancy diamonds via EPR spectroscopy. Crystals, 2022, 12, 1775. [link]

  8. Qasem, Z.; Pavlin, M.; Ritacco, I.; Avivi, M.Y.; Meron, S.; Hirsch, M.; Shenberger, Y.; Gevorkyan-Airapetov, L.; Magistrato, A.; Ruthstein, S.; Distrupting Cu trafficking as a potential therapy for cancer. Front. Mol. Biosci. 2022, 1011294. [link].

  9. Schwartz, R.; Ruthstein, S.; Major, D.T.; Copper Coordination States Affect the Flexibility of Copper Metallochaperone Atox1: Insights from Molecular Dynamics Simulations. Protein Sci. 2022, e4464, [link].

  10. Hofmann, L.; Ruthstein, S.; EPR spectroscopy provides new insights into complex biological reaction mechanisms. J. Phys. Chem. B, 2022, 126, 7486-7494, [link].

  11. Shenberger, Y.; Gevorkyan-Airapetov, L.; Hirsch, M.; Hofmann, L.; Ruthstein, S.; An in cell site-specific labeling methodology reveals conformational changes of proteins in bacteria. BioRxiv, 2022, [link].

  12. Yahalom, A.; Shaked, H.; Ruthstein, S.; Chill, J. Inherent minor conformed of Bordetella effector BteA directs chaperone-mediated unfolding. J. Am. Chem. Soc. 2022, 144, 11553-11557, [link].

  13. Yakobov, I.; Mandato, A.; Hofmann, L.; Singewald, K.; Shenberger, Y.; Gevorkyan-Airapetov, L.; Saxena, S.; Ruthstein, S.; Allostery-driven changes in dynamics regulate the activation of bacterial copper transcription factor. Protein. Sci. 2022, 31, e4309, [link].

  14. Litvak, I.; Cahana, A.; Anker, Y.; Ruthstein, S.; Cohen, H.; The effects of thermal treatment and irradiation on the chemical properties of natural diamonds. PCCP, 2022, 24, 11696-11703, [link].

  15. Walke, G.; Aupic, J.; Kashoua, H.; Janos, P.; Meron, S.; Shenberger, Y.; Qasem, Z.; Gevorkyan-Airapetov, L.; Magistrato, A.; Ruthstein, S.; Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion. Biophys. J. 2022, 121, 1194-1204. [link]

  16. Janos, P.; Aupic, J.; Ruthstein, S.; Magistrato, A.;  The conformational plasticity of the selectivity filter methionines controls the in-cell Cu(I) uptake through the CTR1 transporter. BioRxiv [link]. QRB discovery, 2022, 3, e3 [link].

  17. Casto, J.; Mandato, A.; Hofmann, L.; Yakobov, I.; Ghosh, S.; Ruthstein, S.; Saxena, S.; Cu(II)-based DNA labeling identifies the structural link between activation and termination in a Metalloregulator. Chem. Sci. 2022, 13, 1693-1697, [link].

  18. Meron, S.; Shenberger, Y.; Ruthstein, S.; The advantages of EPR spectroscopy in exploring diamagnetic metal ion binding and transfer mechanisms in biological systems. Magnetochemistry, 2022, 8, 3, [link].

  19. Litvak-Kochavi, I.; Chana, A.; Anker, Y.; Ruthstein, S., Cohen, H.; Effect of diamond polishing and thermal treatment on carbon’s stable radical nature and structure. Materials, 2021, 14, 7719, [link].

  20. Telkhozhayeva, M.; Konar, R.; Lavi, R.; Teblum, E.; Bibhudatta, M.; Ruthstein, S.; Moretti, E.; Nessim, G.; Phase-dependent photocatalytic activity of bulk and exfoliated defect-controlled flakes of layered copper sulfides under simulated solar light. ACS Sustainable Chem & Eng. 2021, 9, 16103-16114, [link].

  21. Schiemann, O.;...;Jeschke, G. Benchmark test and guidelines for DEER/PELDOR experiments on nitroxide-labeled biomolecules. J. Am. Chem. Soc. 2021, 143, 17875-17890 [link].

  22. Taub, T.; Ruthstein, S.; Cohen, H.; Thermal Stability of Carbon-Centered Radicals Involved in Low-Temperature Oxidation of Bituminous and Lignite Coals as a Function of Temperature.  ACS Omega. 2021, 6, 33428-33435. [link].

  23. Schwartz, R.; Ruthstein, S.; Major, D.T.; Molecular dynamics simulations of the apo- and holo-states of the copper-binding protein CueR reveal principal bending and twisting motions. J. Phys. Chem. B. 2021, 33, 9417-9425. [link]

  24. Litvak, I.; Cohen, H.; Anker, Y.; Ruthstein, S.; Nitrogen concentration and anisotropic effects on the EPR spectra of natural diamonds. CrystEngComm. 2021, 23, 3453-3459. [link].

  25. Walke, G.; Meron, S.; Shenberger, Y.; Gevorkyan-Airapetov, L.; Ruthstein, S.; Cellular uptake of the ATSM-Cu(II) complex under hypoxic conditions. Chem. Open. 2021, 10, 486-492. [link]

  26. Hofmann, L.; Hirsch, M.; Ruthstein, S.; Advances in the understanding of the copper homeostasis in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 2050. [Link

  27. Moumen, A.; Konar, R.; Zappa, D.; Teblum, E.; Perelshtein, I.; Lavi, R.; Ruthstein, S.; Nessim, G.; Comini, E.; Robust room-temperature NO2 sensors from exfoliated 2D few-layered CVD-grown bulk Tungsten di-slenide (2H-WSe2). ACS Applied Materials & Interfaces. 2021, 13, 4316-4329. [link]

  28. Otis, G.; Nassir, M.; Zutta, M.; Saady, A.; Ruthstein, S.; Mastai, Y.; Enantioselective crystallization of chiral inorganic crystals of ε-Zn(OH)2 with amino acids. Angew. Chem. Int. Ed. 2020, 59, 20924-20929. [link] selected as Hot paper.

  29. Taub, T.; Ruthstein, S.; Cohen, H.; The Mechanism underlying the Emission of Gases during the Low-Temperature Oxidation of Bituminous and Lignite Coal Piles: The Involvement of Radicals.  ACS Omega. 2020. 5, 28500-28509. [link]

  30. ZaccaK, M.; Qasem, Z.; Gevorkyan-Airapetov, L.; Ruthstein, S.; An EPR study on the interaction between the Cu(I) metal binding domains of ATP7B and the Atox1 metallochaperone. Int. J. Mol. Sci. 2020, 21, 5539. [link]

  31. Perkal. O; Qasem, Z.; Turgeman, M.; Schwartz, R.; Gevorkyan-Airapetov, L.; Pavlin, M.; Magistrato, A.; Major, D.; Ruthstein, S.; Cu(I) controls conformational states in the human metallochaperone Atox1:an EPR and mutiscale simulation study. J. Phys. Chem. B. 2020, 124, 4399-4411. [link]

  32. Susai, F.A; Sclar, H.; Maiti, S.; Burstein, L.; Perkal, O.; Grinblat, J.; Talianker, M.; Ruthstein, S.; Erk, C.; Hartmann, P.; Markovsky, B.; Aurbach, D.; Stabilized Behavior of LiNi0.85Mn0.05O2 Cathode Materials Induced by their treatment with SO2 . ACS Appl. Energ. Mater. 2020, 3, 3609-3618. [link]

  33. Levy, N.; Lori, O.; Gonen, S.; Mizrahi, M.; Ruthstein, S.; Elbaz, L.; The relationship of morphology and catalytic activity: A case study of iron corrole incorporated in high surface area carbon supports. Carbon 2020, 158, 238-243. [link]

  34. Sameach, H.; Ruthstein, S.; EPR distnace measurements as a tool to characterize protein- DNA complexes. Isr. J. Chem. 2019, 59, 980-989. [link]

  35. Meir, A.; Lepechkin-Zilbermintz, V.; Kahremany, S.; Schwerdtfeger, F.; Gevorkyan-Airapetov, L.; Munder, A.; Viskind, O.; Gruzman, A.; Ruthstein, S.; Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics BioRxiv. 2019. [link]. Plos One. 2019, 14, e0227070 [link].

  36. Pavlin, M.; Qasem, Z.; Sameah, H.; Gevorkyan-Airapetov, L.; Ritacco, I.; Ruthstein, S.; Magistrato, A.;  Unraveling the impact of Cysteine-to-Serine mutations on the structural and functional properties of Cu(I)-binding proteins. Int. J. Mol. Sci. 2019, 20, 3462. [link]

  37. Walke, G.; Ruthstein, S.; Does the ATSM-Cu(II) biomarker integrate into the human cellular copper cycle? ACS Omega. 2019, 4, 12278-12285. [link]

  38. Meir, A.; Walke, G.; Schwerdtfeger, F.; Gevorkyan-Airapetov, L.; Ruthstein, S.; Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein. BioRxiv. 2019. [link]. Plos One, 2019, e0219337 [link].

  39. Qasem, Z.; Pavlin, M.; Ritacco, I.; Gevorkyan-Airapetov, L.; Magistrato, A.;  Ruthstein, S.; The pivotal role of MBD4-ATP7B in the human Cu(I) excretion path as revealed by EPR experiments and all-atom simulations. Metallomics. 2019, 11, 1288-1297. [link]

  40. Magistrato, A.;  Qasem, Z.; Pavlin, M.; Ruthstein, S.; Copper trafficking in eukaryotic systems: Current knowledge from experimental and computational efforts. Curr. Opin. Struct. Biology. 2019, 58, 26-33. [link]

  41. Sameach, H.; Ghosh, S.; Gevorkyan-Airapetov, L.; Saxena, S.; Ruthstein, S.; EPR Spectroscopy detecs various active state conformations of the transcriptional regulator CueR. Angew. Chem. Int. Ed. 2019, 58, 3053-3056. [link]; [Cover]

  42. Munder, A.; Moskovitz, Y.; Meir, A.; Levy, L.; Kahremany, S.; Kolitz-Domb, M.; Cohen, G.; Shtriker, E.; Viskind, O.; Lellouche, J.-P.; Senderowitz, H.; Chessler, S.; Korshin, E.; Ruthstein, S.; Gruzman, A.; Covered by Neuroligin-2-derived peptide polyamidoamine-based (PAMAM) dendrimers enhances panceratic b-cells'proliferation and function. Med. Chem. Comm. 2019, 10, 280-293. [link]

  43. Qasim, A.; Sher, I.; Hirschhorn, O.; Shaked, H.; Qasem, Z.; Ruthstein, S.; Chill, J. ; A KcsA cytoplasmic pH-gate investigated in lipoprotein nanodiscs.  ChemBioChem. 2019, 20, 813-821. [link]

  44. Snitkoff, R.Z.; Levy, N.; Ozery, I.; Ruthstein, S.; Elbaz, L. ; Imidazole decorated reduced graphene oxide: a biomimetic ligand for selective oxygen reduction electrocatalysis with metalloporphyrins.  Carbon. 2019, 143, 223-229. [link]

  45. Taub, T.; Ruthstein, S.; Cohen, H.; The involvement of carbon-centered radicals in the aging process of coals under atmospheric conditions: an EPR study.  PCCP. 2018, 20, 27025-27035. [link]

  46. Kahremany, S.; Zhenin, M.; Shenberger, Y.; Maimoun, D.; Colotti, G.; Arad, M.; Shainberg, A.; Senderowitz, H.; Ruthstein, S.; Gruzman, A.; Peptide-based development of PKA activators. New J. Chem. 2018, 42, 18585-18597. [link]

  47. Shenberger, Y.; Marciano, O.; Gottlieb, H.; Ruthstein, S.; Insights into the N-terminal Cu(II) and Cu(I) binding sites of the human copper transporter Ctr1. J. Coord. Chem. 2018, 71, 1985-2002. [link]

  48. Levy, A.; Turgeman, M.; Gevorkyan-Aiapetov, L.; Ruthstein, S.; The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations. Protein Sci. 2017, 26, 1609-1618. [link]

  49. Meir, A.; Abdelhai, A.; Moskovitz, Y.; Ruthstein, S.; EPR spectroscopy targets conformational and topological changes in the E.coli membrane fusion CusB dimer upon Cu(I) binding. Biophys. J. 2017, 112, 2494-2502. [link]

  50. Sameach, H.; Narunsky, A.; Azoulay-Ginsburg, S.; Gevorkyan-Aiapetov, L.; Zehavi, Y.; Moskovitz, Y.; Juven-Gershon, T.; Ben-Tal, N.; Ruthstein, S.; Structural and dynamics characterization of the MerR family metalloregulator CueR in its repression and activation states. Structure. 2017, 25, 988-996. [link]

  51. Levy, A.; Nissim, M.; Mendelman, N.; Chill, J.; Ruthstein, S.;  Ctr1 intracellular loop is involved in the copper transfer mechanism to the Atox1 metallochaperone. J. Phys. Chem. B. 2016, 120,12334-12345. [link]

  52. Marciano, O.; Gonen, S.; Levy, N.; Teblum, E.; Yemini, R.; Nessim, G.; Ruthstein, S.; Elbaz, L. Modulation of oxygen content in graphene surfaces using temperature programmed reductive annealing: Electron Paramagnetic Resonance (EPR) and electrochemical study. Langmuir. 2016, 32, 11672-11680. [link]

  53. Zer Aviv, P.; Shubely, M.; Moskovits, Y.; Viskind, O.; Albeck, A.; Vertommen, D.; Ruthstein, S.; Shoken, M.; Gruzman, A. A new oxopiperazin-based peptidomimetic molecule inhibits prostatic acid phosphatase secretion and induces prostate cancer cell apoptosis. Chemistry Select. 2016, 1, 4658-4667. [link]

  54. Fleker, O.; Borenstein, A.; Lavi, R.; Ruthstein, S.; Aurbach D.; Preparation and properties of metal organic framework/activated carbon composite materials. Langmuir. 2016, 32, 4935-4944. [link]

  55. Shilina, Y.; Ziv, B.; Meir, A.; Banerjee, A.; Ruthstein, S.; Luski, S.; Aurbach D.; Halalay, I.C.; Combined EPR and AAS/ICP analysis as diagnosis for soluble manganese species from Mn-based positive electrode materials in Li-ion cells. Anal. Chem. 2016, 88, 4440-4447. [link]

  56. Marciano, O.; Moskovitz, Y.; Hamza, I.; Ruthstein, S.; Histdine residues are important for preserving the structure and heme binding to the c.elegans HRG-3 heme trafficking protein. J. Biol. Inorg. Chem. 2015, 20, 1253-1261. [link]

  57. Weintraub, S.; Moskovitz, Y.; Fleker, O.; Levy, A.; Meir, A.; Ruthstein, S.; Benisvy, L.; Gruzman, A.; SOD mimetic activity and antiproliferative properties of a novel tetra nuclear copper(II) complex. J. Biol. Inorg. Chem. 2015, 20, 1287-1298. [link]

  58. Dalalyon, A.; Qi, M.; Ruthstein, S.; Vega, S.; Godt, A.; Feintuch, A.; Goldfarb, D.; Gd(III)-Gd(III) EPR distance measurements - the range of accessible distances and the impact of zero field splitting. PCCP, 2015, 17, 18464-18476. [link]

  59. Meir, A.; Natan, A.; Moskovitz, Y.; Ruthstein, S.; EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between CusB N-terminal domain and the metallochaperone CusF. Metallomics, 2015, 7, 1163-1172. [link]

  60. Shenberger, Y.; Shimshi, A.; Ruthstein, S.; EPR spectroscopy shows that the blood carrier protein, human serum albumin, closely interacts with the N-terminal domain of the copper transporter, CTR1. J. Phys. Chem. B. 2015, 119, 4824-4830. [link]

  61. Shenberger, Y.; Gottlieb, H.; Ruthstein, S.; EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment. J. Biol. Inorg. Chem. 2015, 20, 719-727. [link]

  62. Ruthstein, S.; Ji, M.; Shin, B.K.; Saxena, S.; A simple double quantum coherence ESR sequence that minimizes nuclear modulation in Cu(II)-ion based distance measurments. J. Magn. Reson. 2015, 257, 45-50. [link]

  63. Munder, A.; Moskovitz, Y.; Rediko, B.; Levy, A.; Ruthstein, S.; Gellerman, G.; Gruzman, A.; Antiproliferative Effects of Novel Aminoacridine-Based Compounds. Med. Chem. 2015. 11, 373-382. [link]

  64. Levy, A.; Yarmiayev, V.; Moskovitz, Y.; Ruthstein, S.; Probing the Structural Flexibility of the Human Copper Metallochaperone Atox1 Dimer and its Interaction with the CTR1 C-Terminal Domain. J. Phys. Chem. B. 2014, 118, 5832-5842. [link]

  65. Green, U.; Keinan-Adamsky, K.; Attia, S.; Aizenshtat, Z.; Goobes, G.; Ruthstein, S.; Cohen, H.; Elucidating the role of stable carbon radicals in the low temperature oxidation of coals by coupled EPR-NMR spectroscopy - a method to characterize surfaces of porous carbon radicals. PCCP. 2014, 16, 9364-9370. [link]

  66. Green, U.; Shenberger, Y.; Aizenshtat, Z.; Cohen, H. Ruthstein, S.; Exploring the radical nature of a carbon surface by Electron Paramagnetic resonance and a calibrated gas flow. JoVE, 2014, .86, doi:10.3791/51548. [link]

  67. Ji, M.; Ruthstein, S.; Saxena, S.; Paramagnetic metal ions in Pulsed ESR distance measurements. Acc. Chem. Res. 2014, 47, 688-695. [link]

  68. Rubinovich, L.; Ruthstein, S.; Weiss, D.; The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Mol. Plant. 2014, 7(1), 244-247. [link]

  69. Shenberger, Y.; Yarmiayev, V.; Ruthstein, S.; Exploring the interaction between the human copper transporter, CTR1, c-terminal domain and a methionine motif, in the presence of Cu(I) and Ag(I) ions, using EPR spectroscopy. Mol. Phys. 2013, 111, 2980-2991. [link]

  70. Ruthstein,S.; Ji, M.; Mehta, P.; Jen-Jacobson, L.; Saxena, S.K.; Sensitive Cu2+-Cu2+ distance measurements in a protein-DNA complex by Double-Quantum Coherence ESR. J. Phys. Chem. B. 2013, 117, 6227-6230. [link]

  71. Green, U.; Aizenshtat, Z.; Ruthstein, S.; Cohen, H.; Reducing the spin-spin interaction of stable carbon radicals. PCCP, 2013, 15, 6182-6184. [link]

  72. Green, U.; Aizenshtat, Z.; Ruthstein, S.; Cohen, H.; Stable radicals formation in coals undergoing weathering: effect of coal rank. PCCP, 2012, 14, 13046-13052. [link]

  73. Ruthstein S.; Stone, K.M.; Cunningham, T.F.; Ming, J.; Cascio, M.; Saxena, S.; Pulsed Electron spin Resonance resolves the coordination site of Cu(II) ions in glycine receptor. Biophys. J., 2010, 99(8), 2497-2506. [link]

  74. Omer L.; Ruthstein S.; Goldfarb, D.; Talmon, Y.; High resolution cryogenic-electron microscopy reveals details of a hexagonal-to-bicontinuous cubic phase transition in mesoporous silica synthesis, J. Am. Chem. Soc., 2009, 131, 12466-12473. [link]

  75. Ruthstein, S.; Raitsimring, A.M.; Bitton, R.; Frydman, V.; Godt, A.; Goldfarb, D.; Distribution of guest molecules in Pluronic micelles studied by double electron electron spin resonance and small angle X-ray scattering. PCCP, 2009, 11, 148-160. [link]

  76. Ruthstein, S.; Goldfarb, D.; An EPR tool box for exploring the formation and properties of ordered template mesoporous materials. Electron Paramagnetic Resonance, 2008, 21, 184-215.

  77. Ruthstein, S.; Goldfarb, D.; Evolution of solution structures during the formation of cubic mesoporous material, KIT-6, determined by double electron electron resonance. J. Phys. Chem. C, 2008, 112, 7102-7109. [link]

  78. Ruthstein, S.; Schmidt, J.; Kesselman, E.; Popovits-Biro, R.; Frydman, V.; Omer, L.; Talmon, Y.; Goldfarb, D.; Molecular level Processes and nanostructure evolution during the formation of the cubic mesoporous material KIT-6. Chem. Mater. 2008, 20, 2779-2792. [link]

  79. Ruthstein, S.; Schmidt, J.; Kesselman, E.; Talmon, Y.; Goldfarb, D.; Resolving Intermediate Solution Structure During the Formation of Mesoporous SBA-15.  J. Am. Chem. Soc. 2006, 128, 3366-3374. [link]

  80. Ruthstein, S.; Potapov, A.; Raitsimring, A.M.; Goldfarb, D.; Double Electron Electron Resonance as a Method for Characterization of Micelles. J. Phys. Chem .B. 2005, 109, 22843-22851. [link]

  81. Ruthstein, S.; Artzi, R.; Goldfarb, D.; Naaman, R.; EPR Studies on the Organization of Self-assembled organic monolayers adsorbed on GaAs. PCCP, 2005, 7, 524-529. [link]

  82. Ruthstein, S.; Frydman, V.; Goldfarb, D.; Study of the Initial Formation Stages of the Mesoporous Materials SBA-15 Using Spin-Labeled Block Co-polymer Templates. J. Phys. Chem. B. 2004, 108, 9016-9022. [link]

  83. Ruthstein, S.; Frydman, V.; Kababya, S.; Landau, M.; Goldfarb, D; Study of the Formation of the Mesoporous Material SBA-15 by EPR Spectroscopy. J. Phys. Chem. B. 2003, 107, 1739-1748. [link]







bottom of page